doc2vec in R

Learn how to apply doc2vec in R on your text in this pdf presentation available at Where we focus on our R package doc2vec available at

word2vec githubYou can view the presentation below.

NEW, since 2020, you can now access courses Text Mining with R and Advanced R programming online through our online school, let us know here if you want to obtain access.



udpipe R package updated

An update of the udpipe R package ( landed safely on CRAN last week. Originally the udpipe R package was put on CRAN in 2017 wrapping the UDPipe (v1.2 C++) tokeniser/lemmatiser/parts of speech tagger and dependency parser. It now has many more functionalities next to just providing this parser.

The current release (0.8.4-1 on CRAN: makes sure default models which are used are the ones trained on version 2.5 of universal dependencies. Other features of the release are detailed in the NEWS item. This is what dependency parsing looks like on some sample text.

x <- udpipe("The package provides a dependency parsers built on data from", "english")
plt <- textplot_dependencyparser(x, size = 4, title = "udpipe R package - dependency parsing")

udpipe parser plot

During the years, the toolkit has now also incorporated many functionalities for commonly used data manipulations on texts which are enriched with the output of the parser.  Namely functionalities and algorithms for collocations, token co-occurrence, document term matrix handling, term frequency inverse document frequency calculations,  information retrieval metrics, handling of multi-word expressions, keyword detection (Rapid Automatic Keyword Extraction, noun phrase extraction, syntactical patterns) sentiment scoring and semantic similarity analysis.

Many add-on R packages

The udpipe package is loosely coupled with other NLP R packages which BNOSAC released in the last 4 years on CRAN. Loosely coupled means that none of the packages have hard dependencies of one another making it easy to install and maintain and allowing you to use only the packages and tools that you want.

Hereby a small list of loosely coupled packages by BNOSAC which contain functions and documentation where the udpipe package is used as a preprocessing step.

- BTM: Biterm Topic Modelling
- crfsuite: Build named entity recognition models using conditional random fields
- nametagger: Build named entity recognition models using markov models
- torch.ner: Named Entity Recognition using torch
- word2vec: Training and applying the word2vec algorithm
- ruimtehol: Text embedding techniques using Starspace
- textrank: Text summarisation and keyword detection using textrank
- brown: Brown word clustering on texts
- sentencepiece: Byte Pair Encoding and Unigram tokenisation using sentencepiece
- tokenizers.bpe: Byte Pair Encoding tokenisation using YouTokenToMe
- text.alignment: Find text similarities using Smith-Waterman
- textplot: Visualise complex relations in texts

textplot example

Model building example

To showcase the loose integration, let's use the udpipe package alongside the word2vec package to build a udpipe model by ourselves on the German GSD treebank which is described at and contains a set of CC BY-SA licensed annotated texts from news articles, wiki entries and reviews.
More information at

Download the treebank.

settings <- list()
settings$ud.train    <- ""
settings$      <- ""
settings$ud.test     <- ""
## Download the conllu files
download.file(url = settings$ud.train, destfile = "train.conllu")
download.file(url = settings$,   destfile = "dev.conllu")
download.file(url = settings$ud.test,  destfile = "test.conllu")

Build a word2vec model using out R package word2vec

  • Create wordvectors on the downloaded training dataset as these are used for training the dependency parser
  • Save the word vectors to disk
  • Inspect a bit the word2vec model by showing similarities to some German words
txt <- udpipe_read_conllu("train.conllu")
txt <-, term = "token", group = c("doc_id", "paragraph_id", "sentence_id"), collapse = " ")
txt <- txt$token
w2v <- word2vec(txt, type = "skip-gram", dim = 50, window = 10, min_count = 2, negative = 5, iter = 15, threads = 1)
write.word2vec(w2v, file = "wordvectors.vec", type = "txt", encoding = "UTF-8")
predict(w2v, c("gut", "freundlich"), type = "nearest", top = 20)

And train the model

  • Using the hyperparameters for the tokeniser, parts of speech tagger & lemmatizer and the dependency parser as shown here:
  • Note that model training takes a while (8hours up to 3days) depending on the size of the treebank and your hyperparameter settings. This example was run on a Windows i5 CPU laptop with 1.7Ghz, so no GPU needed, which makes this model building process still accessible for anyone with a simple PC.
m <- udpipe_train(file = "de_gsd-ud-2.6-20200924.udpipe",
                  files_conllu_training = "train.conllu",
                  files_conllu_holdout  = "dev.conllu",
                  annotation_tokenizer = list(dimension = 64, epochs = 100, segment_size=200, initialization_range = 0.1,
                                              batch_size = 50, learning_rate = 0.002, learning_rate_final=0, dropout = 0.1,
early_stopping = 1),
                  annotation_tagger = list(models = 2,
                                           templates_1 = "lemmatizer",
guesser_suffix_rules_1 = 8, guesser_enrich_dictionary_1 = 4,
guesser_prefixes_max_1 = 4,
                                           use_lemma_1 = 1,provide_lemma_1 = 1, use_xpostag_1 = 0, provide_xpostag_1 = 0,
                                           use_feats_1 = 0, provide_feats_1 = 0, prune_features_1 = 1,
                                           templates_2 = "tagger",
guesser_suffix_rules_2 = 8, guesser_enrich_dictionary_2 = 4,
guesser_prefixes_max_2 = 0,
                                           use_lemma_2 = 1, provide_lemma_2 = 0, use_xpostag_2 = 1, provide_xpostag_2 = 1,
                                           use_feats_2 = 1, provide_feats_2 = 1, prune_features_2 = 1),
                  annotation_parser = list(iterations = 30,
embedding_upostag = 20, embedding_feats = 20, embedding_xpostag = 0,
                                           embedding_form = 50, embedding_form_file = "wordvectors.vec",
                                           embedding_lemma = 0, embedding_deprel = 20, learning_rate = 0.01,
                                           learning_rate_final = 0.001, l2 = 0.5, hidden_layer = 200,
                                           batch_size = 10, transition_system = "projective", transition_oracle = "dynamic",
                                           structured_interval = 8))

You can see the logs of this run here. Now your model is ready, you can use it on your own terms and you can start using it to annotate your text.

model <- udpipe_load_model("de_gsd-ud-2.6-20200924.udpipe")
texts <- data.frame(doc_id = c("doc1", "doc2"), text = c("Die Wissenschaft ist das beste, was wir haben.", "Von dort war Kraftstoff in das Erdreich gesickert."), stringsAsFactors = FALSE)
anno <- udpipe(texts, model, trace = 10)

udpipe parser table


Thanks to Slav Petrov, Wolfgang Seeker, Ryan McDonald, Joakim Nivre, Daniel Zeman, Adriane Boyd for creating and distributing the UD_German-GSD treebank and to the UDPipe authors in particular Milan Straka.

finding contour lines

Finally, the R package you all have been waiting for has arrived - image.ContourDetector developed at It detects contour lines in images alongside the 'Unsupervised Smooth Contour Detection' algorithm available at

Have you always wanted to be able to draw like you are in art school? Let me show how to quickly do this.

example contourlines

If you want to reproduce this, the following snippets show how. Steps are as follows

1. Install the packages from CRAN


2. Get an image, put it into grey scale, pass the pixels to the function an off you go.

img <- image_read("")
mat <- image_data(img, channels = "gray")
mat <- as.integer(mat, transpose = TRUE)
mat <- drop(mat)
contourlines <- image_contour_detector(mat)
plt <- plot(contourlines)

example contourlines linesonly

3. If you want to have the same image as shown at the top of the article:

Put the 3 images (original, combined, contour lines only) together in 1 plot using the excellent magick R package:

plt <- image_graph(width = image_info(img)$width, height = image_info(img)$height)
plt_combined <- image_graph(width = image_info(img)$width, height = image_info(img)$height)
plot(contourlines, add = TRUE, col = "red", lwd = 5)
combi <- image_append(c(img, plt_combined, plt))
image_write(combi, "example-contourlines.png", format = "png")

word2vec in R

Learn how to apply word2vec in R on your text in this pdf presentation available at Where we focus on our R package word2vec available at

word2vec githubYou can view the presentation below.

NEW, since 2020, you can now access courses Text Mining with R and Advanced R programming online through our online school, let us know here if you want to obtain access.



Text Plots

A few weeks ago, we pushed R package textplot to CRAN and it was accepted for release last week. The package contains straightforward functionalities for the visualisation of text, namely of 

  • text cooccurences
  • text clusters (in casu biterm clusters)
  • dependency parsing results
  • text correlations and text frequencies

Some examples of these plots are shown in the gif.

examples textplot

More details can be found in the pdf presentation shown below.